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Wave measuring buoys are essential devices in ocean engineering. This article describes the 
process of designing a program that calculates useful wave parameters from measured raw 
acceleration data. The calculations are based on the assumption that the buoy analogue to a 
water particle travels on a circular orbit. The final program calculated position from the 
acceleration data and eliminated unwanted rotation of the coordinate system of the buoy. In 
a first field test the program turned out to be successful. 
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1 Introduction 
Ocean waves can be seen as influential economic factor for tourism, as well as for engi-
neering and energy conversion. Water waves are appreciated for their beauty and feared 
for their destroying impact. Nowadays several alternative adapted technologies have been 
developed to measure wave data – however, wave measurements with help of buoys are 
still in use and will play a role in the future. 

From March to July 2016 a wave measurement buoy project was conducted. It focused on 
an existing measurement buoy that was to follow the ocean surface motion and deliver 
acceleration, rotation and time data. Two previous student groups working on the project 
had already developed the basic hardware of the buoy. By combining and processing the 
data, the aim was to retrace the accelerations to motions and calculate characteristic wave 
parameters. For a better evaluation of the results of the processing, a second program was 
developed to simulate wave data. After a field test real waves could be analysed. 

2 Theory of water waves 
Basically, water waves are oscillating elevations of the ocean surface. If only one point is 
observed during a certain time, it gets obvious that in the time domain, water waves in 
their simplest appearance can be represented by sinusoidal oscillation. Observing points 
at several locations, at only one point of time, leads to the same result. 

Water waves can be characterized by different parameters. 

• One single wave is defined as the distance between two downward or two upward 
zero crossings in a time record. The temporal difference between them is called 
wave period T.1 

• The spatial difference between two successive peaks or troughs is defined as wave 
length λ.2 

                                                           
 
 
1 Holthuijsen, 2007, p.26. 
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• The vertical distance between peak and trough of a wave is the wave height H.3 

It is obvious that in reality one would not find this idealized wave shape with constant H, 
λ and T. These parameters vary statistically and waves with different parameters are over-
lain – commonly called sea state. This is true for wave observations in general. A wave 
measuring buoy works according to the following principle: 

Focusing on a fixed point, like a water particle or even an idealized buoy, one will notice 
that it travels along a circular orbit during one wave period. The diameter of this orbit 
depends on the water depth. It is zero at the bottom and reaches a maximum at the sea 
surface.4 Furthermore, the orbital movement depends on the previously mentioned pa-
rameters.  

The linear wave theory offers a connection between these parameters and the appearance 
of the orbital movement.5 This theory was the base for calculating test data for the buoy 
in order to be able to establish a processing routine before the first actual field-test. 

3 Appearance and components of the buoy 
The project focused on establishing a data processing routine for an existing buoy, whose 
hardware components – including the sensors – had been designed by two previous 
groups. Hence, in the following only the most important aspects shall be brought up. 

The buoy is made up of a former deep-sea buoy, with a plastic housing containing a glass 
sphere. The sphere is equipped with a 3D acceleration sensor and a magnetometer 
(LSM303D)6, a gyroscope (L3GD20H)7 and a real time clock, supplied by batteries. Via a 
microcontroller the data is written onto a memory card. The frequency of measurement is 
10 Hz. In order to ensure the free movement of the buoy, an additional anchoring buoy 
was applied to which the actual measuring buoy was connected via flexible mooring lines. 

4 Methods: Data processing 
In the following, the methods of the entire data processing will be presented. This in-
cludes the steps from the raw data that could be read from the memory card, centering 
and motion corrections and finally to calculating relevant parameters from the edited raw 
data and visualizing the results. 

 

                                                                                                                                                                     
 
 
2 Wright, Colling, Park, 1999, p.11. 

3 Holthuijsen, 2007, p.27. 

4 Ibid, p.121 ff. 

5 Malcherek, 2010, p. 129 ff. 

6 LSM303D – Datasheet, 2012, p.1. 

7 L3GD20H - Datasheet, 2013, p.1. 
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4.1 Computer Program 
To process the given data, the calculation program Matlab8 was chosen. The input data 
and equation systems can be seen as matrixes and can therefore be processed well since 
Matlab works matrix based. It provides helpful functions and toolboxes, specified more 
detailed below, and graphical user interfaces that were used to make the program user-
friendly.9 

4.2 Input Data 
The given sensors measure data with a frequency of 10Hz, which is written on the SD-card 
as ASCII-files (American Standard Code for Information Interchange), thus simple text 
files. Every 30 minutes a new file is created. The data is written in rows of ten columns, 
which are: time (hours, minutes, seconds), acceleration (3D), gyroscope (3D), magnetom-
eter (3D) (fig. 1). 

Fig. 1: Raw data delivered by the sensor as ASCII-files. Columns l. to r.: time (hh), time (mm), time (ss), acceleration (x-axis), 
acceleration (y-ax.), acceleration (z-ax.), gyroscope (x-ax.), gyroscope (y-ax.), gyroscope (z-ax.), magnetometer (x-ax.:y-ax.:z-
ax.). 
As during the determined project time the magnetometer could not be included in the 
processing and the focus was on the acceleration data, the magnetometer data is not re-
ferred to in the following report. 

The acceleration and gyroscope data are delivered in bits and saved as integers. To trans-
form the data into m/s² and rad/s they can be multiplied by factors given in the 
datasheets. These are: 0.061mg/LSB = 5.9841*10^-4(m/s²)(1/LSB) for the acceleration sen-
sor10 and 8.75(m°/s)(1/digit) = 0.1527*10^-3(rad/s)(1/digit).11 

In the following, the measured data columns are seen as numerical functions of time. 
They are expected to consist of oscillating functions (sine or cosine) because waves shall 
be measured that are oscillating themselves. However, the actual function is unknown. 

                                                           
 
 
8 MATLAB, Release 2016a. 

9 Angermann, Beuschel, Rau, Wolfarth, 2011, S.1. 

10 LSM303D – Datasheet, June 2012, p.10. 

11 L3GD20H - Datasheet, March 2013, p.10. 
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4.3 Calibration 
Due to the sensors deviation, the measured data has to be calibrated to reduce measure-
ment uncertainties by comparing measured values (𝑉𝑉𝑚𝑚) to known values. As the sensors 
work linearly12 in our range of measurement the data must only be calibrated by an offset 
(O) and multiplied by a factor (F). Therefore, a linear calibration with two known values 
per dataset is sufficient. The main idea for these known values was to choose values that 
can easily be measured manually and for which no extra equipment is needed. Therefore, 
the values for the calibration of the acceleration sensor are the positive and negative grav-
itational acceleration (𝑉𝑉𝑘𝑘,𝑎𝑎𝑎𝑎𝑎𝑎 = ±9,81𝑚𝑚

𝑠𝑠²
), that can be measured simply by holding an axis 

vertical to the ground. Measuring an angular velocity to calibrate the gyroscope’s axes is 
not possible manually, because a constant velocity will not be achieved. Therefore, the 
values for the calibration of the gyroscope are angles, which can be calculated by integra-
tion over time (t). The chosen values are𝑉𝑉𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 = ±180°. These are measurable by a rota-
tion around an axis. 

For a linear calibration two equations must be solved. Each equation is equal to equation 1 
or equation 2, depending on the sensor. 

Acceleration:  𝑉𝑉𝑘𝑘,𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑉𝑉𝑚𝑚,𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎  (1) 

Gyroscope: 𝑉𝑉𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 = ∫(𝑉𝑉𝑚𝑚,𝑔𝑔𝑔𝑔𝑔𝑔 ∙ 𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑂𝑂𝑔𝑔𝑔𝑔𝑔𝑔) ∙ 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 (2a) 

            ⇒ 𝑉𝑉𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 = �∫𝑉𝑉𝑚𝑚,𝑔𝑔𝑔𝑔𝑔𝑔 ∙ 𝑑𝑑𝑑𝑑� ∙ 𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑂𝑂𝑔𝑔𝑔𝑔𝑔𝑔 ∙ ∆𝑑𝑑  (2b) 

With these equations the offset and the factor can be calculated and eliminated by equa-
tion 3. The calibrated data (𝐷𝐷𝑎𝑎) can be calculated out of the measured data (𝐷𝐷𝑚𝑚). This is 
graphically shown in Fig. 2. 

   𝐷𝐷𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐷𝐷𝑚𝑚,𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎   (3a) 

   𝐷𝐷𝑎𝑎,𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐷𝐷𝑚𝑚,𝑔𝑔𝑔𝑔𝑔𝑔 ∙ 𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑂𝑂𝑔𝑔𝑔𝑔𝑔𝑔    (3b) 

The offset and factor can differ for every measurement because they do not only depend 
on the kind of sensor but also on its age and environmental influences, e.g. temperature. 
Therefore, the calibration must be repeated for every new measurement. 

 

 

 

 

 

 

 

 

                                                           
 
 
12 LSM303D – Datasheet, June 2012, p.1. 

Fig.2: Example measurement of the acceleration sensor’s z-axis. Blue curve: data that is not calibrated. Green 
curve: calibrated data. Red: calibration measurement. Orange: wave measurement. 
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4.4 Transformation and Integrations 
The general idea for the processing was to integrate the accelerations (a) twice over time 
(t) to generate the velocity (v) and the distance (s) and therefore a 3D-movement of the 
buoy. From the vertical movement the wave heights can then be calculated. The general 
equation for the integration is equation 4, which is used for fixed coordinate systems. 

    𝑎𝑎 = ∫𝑣𝑣 ∙ 𝑑𝑑𝑑𝑑 = ∬𝑠𝑠 ∙ 𝑑𝑑𝑑𝑑 ∙ 𝑑𝑑𝑑𝑑   (4) 

As the buoy rotates, the sensors’ coordinate system is also rotating. This rotating coordi-
nate system must firstly be transformed into a fixed coordinate system. The rotation ma-
trix in equation 5 transfers a vector into a new coordinate system that can be rotated in 
three dimensions. 

(5)13 
The angle α is the length of the angle vector (𝛼𝛼𝑥𝑥 ,𝛼𝛼𝑔𝑔,𝛼𝛼𝑧𝑧) (eq. 6): 

    𝛼𝛼 = �𝛼𝛼𝑥𝑥² + 𝛼𝛼𝑔𝑔² + 𝛼𝛼𝑧𝑧    (6) The unit vector 

𝑛𝑛� is defined as shown in equation 7: 

    𝑛𝑛� = (𝛼𝛼𝑥𝑥,𝛼𝛼𝑦𝑦,𝛼𝛼𝑧𝑧) 
𝛼𝛼

     (7) 

To solve equation 5 the angle vector is needed (eq. 6, eq. 7). As the gyroscope measures an 
angular velocity in three dimensions, it is used to calculate a rotation angle (α) by integra-
tion over time (t) of the angle velocities (ω) (equation 8). 

 𝛼𝛼 = ∫𝜔𝜔 ∙ 𝑑𝑑𝑑𝑑        (8) 

If the integration is done from the beginning, the 3D rotation compared to the first meas-
urement can be calculated for every state. The direction of the first coordinate system can 
then be seen as the fixed one. Therefore, the direction of the axis in the first measurement 
must be known and the z-axis should be vertical to the ground, because the height is cal-
culated by the z-axis-data of the acceleration sensor. 

After the data is transferred into one coordinate system, the accelerations can be integrat-
ed twice. All integrations must be done numerically, as we measure discrete data. We 
used the trapezoidal rule14 to calculate the numerical integral (Matlab function 
“cumtrapz”15). Equation 9 and 10 show the equation for the integration over time (t) with 
the trapezoidal rule for the angular velocity (eq. 9) and the distance (eq.10). ∆𝑑𝑑 is given 
with 0.1s as we measure with a frequency of 10Hz. Two measurements are 0.1s apart from 
each other.  
                                                           
 
 
13 Baker. 

14 Knorrenschild, 2013, p.121 

15 MATLAB and Signal Processing Toolbox, Release 2014a. 
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 Analytical integration: 𝜔𝜔 = ∫ 𝛼𝛼(𝑑𝑑) ∙𝑁𝑁
𝑖𝑖=0 𝑑𝑑𝑑𝑑    (9a) 

 Numerical integration: 𝜔𝜔 = ∑ �𝛼𝛼(𝑡𝑡𝑖𝑖)+𝛼𝛼(𝑡𝑡𝑖𝑖+∆𝑡𝑡)
2

∙ ∆𝑑𝑑�𝑁𝑁
𝑖𝑖=0    (9b) 

 Analytical integration: 𝑠𝑠 = ∫ ∫ 𝑎𝑎 ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑁𝑁
𝑖𝑖=0

𝑁𝑁
𝑖𝑖=0             (10a) 

 Numerical integration: 𝑣𝑣 = ∑ �𝑎𝑎(𝑡𝑡𝑖𝑖)+𝑎𝑎(𝑡𝑡𝑖𝑖+∆𝑡𝑡)
2

∙ ∆𝑑𝑑�𝑁𝑁
𝑖𝑖=0   (10b) 

   𝑠𝑠 = ∑ �𝑣𝑣(𝑡𝑡𝑖𝑖)+𝑣𝑣(𝑡𝑡𝑖𝑖+∆𝑡𝑡)
2

∙ ∆𝑑𝑑�𝑁𝑁
𝑖𝑖=0     (10c) 

4.5 Polynomial Fit 
A polynomial fit is also needed because a possible offset in the original function can lead 
into a linear offset in the first integration and a quadratic offset in the second integration 
(eq. 11). 

 ∫(𝑓𝑓(𝑑𝑑) + 𝑂𝑂1)𝑑𝑑𝑑𝑑 = ∫𝑓𝑓(𝑑𝑑)𝑑𝑑𝑑𝑑 + 𝑂𝑂1 ∙ 𝑑𝑑 + 𝑂𝑂2    (11a) 

 ∫∫(𝑓𝑓(𝑑𝑑) + 𝑂𝑂1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =      

 ∫∫𝑓𝑓(𝑑𝑑)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑂𝑂1 ∙ 𝑑𝑑 ² + 𝑂𝑂2 ∙ 𝑑𝑑 + 𝑂𝑂3     (11b) 

The angle functions are fitted with a linear polynomial fit before transformation, while the 
distance functions are fitted with a quadratic polynomial fit. Matlab includes different 
helpful functions to do a polynomial fit (e.g. “polyfit”16 to calculate the coefficients to fit 
the given function and “polyval”17 to subtract the offset function). These were used instead 
of implementing an own function. Figure 3 shows the effect of a polynomial fit. 

Fig.3: Example data of the acceleration sensor’s z-axis after transformation and double integration. Left: data that is not 
polyfitted and overlain by a quadratic function (f(t)+O∙t²) . Right: data that is polyfitted. Quadratic error function is reduced 
(f(t)) 

                                                           
 
 
16 MATLAB and Signal Processing Toolbox, Release 2014a. 

17 MATLAB and Signal Processing Toolbox, Release 2014a. 
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4.6 Filtering 
Filtering the calculated data is important, because after the calibration and transfor-
mation the measurement can still be overlain by noise. These can be oscillations with very 
high, but also very low frequencies. As we integrate our measurements, mainly oscilla-
tions with low frequencies have a high impact on the measurement. Equation 12 depicts 
that the original oscillation with the amplitude A is divided by the frequency (f) when 
integrated. Therefore the error due to low frequent oscillations is dominant. 

    ∫𝐴𝐴 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠(2𝜋𝜋𝑓𝑓 ∙ 𝑑𝑑)𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋

∙ 𝐴𝐴 ∙ 𝑠𝑠𝑠𝑠𝑛𝑛(2𝜋𝜋𝑓𝑓 ∙ 𝑑𝑑) (12) 

As the buoy’s hardware already existed and the sensors deliver digital data, an analogue 
filter was not possible. Therefore, a digital filter was implemented. A second order but-
terworth band pass filter was the filter of choice. A band pass filter is needed because low 
and high noise frequencies shall be cut off. A butterworth filter is useful because it has the 
flattest frequency respond in the pass band and the passing frequencies shall not be 
changed. The slower roll-off compared to other filters is no problem because the low error 
frequencies and the needed wave frequencies are fading into each other and therefore a 
perfect cut off frequency cannot be found. The butterworth filter is implemented into 
Matlab with the help of the “Signal Processing Toolbox” and the functions “butter” and 
“filtfilt”.18 The cut off frequencies were found empirically by measuring known movements 
and comparing them to the processed data with different filter coefficients. The gained 
coefficients are shown in table 1. The angle functions are filtered before the transfor-
mation, the distance functions are filtered after the polynomial fit. Figure 4 on the follow-
ing page shows an example measurement with and without the digital filter. 

 

 Acceleration sensor Gyroscope 

Low cut off frequency 0.3 Hz 0.05 Hz 

High cut off frequency 2 Hz 3 Hz 

Table 1: Empirically chosen cut off frequencies for the different sensors, for a second order butterworth band pass filter. 
  

                                                           
 
 
18 MATLAB and Signal Processing Toolbox, Release 2014a. 
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Fig.4: Example data of the acceleration sensor’s z-axis after transformation, double inte-
gration and polyfit. Left: data processed without any filters. Right: data processed with all 
filters included. The waves are also present in the upper graph, but they are too small to 
be seen besides the dominant noise. 

4.7 Wave Parameters 

Significant wave height 

The most influential parameter in coastal engineering is the significant wave height, de-
fined as the mean of the highest third of waves in the wave record19, H1/3. This definition 
results from visual observation where the smaller waves tend to be neglected. An easily 
implemented method to find H1/3 is to calculate the mean of the absolute highest third of 
wave height data in a time series. This method turned out to be efficient in tests. Howev-
er, this point of view suggests that each wave produces the same amount of data, which 
means that the wave periods have to be roughly the same. A second, scientifically more 
correct approach is to split the entirely measured data in subdivisions of 30 minutes and 
using the Matlab Signal Processing Toolbox detecting the turning points by a built-in 
function.20 These are the true wave peaks. The highest third of these values is averaged as 
in the first process. 

After all, there was no considerable difference between the results that the two routines 
delivered. Nevertheless, due to the implementation by definition the second approach 
was used for the final processing. 

Significant wave period 

According to the significant wave height, the significant wave period is the mean period of 
the highest one third of waves21, T1/3. A first idea was to calculate it consistently with the 
significant wave height, meaning to eliminate all wave heights below and to calculate the 

                                                           
 
 
19 Holthuijsen, 2007, p.28. 

20 MATLAB and Signal Processing Toolbox, Release 2014a. 

21 Ibid, p.29. 



WISSENSCHAFTLICHE ARTIKEL 69 

 

 
Beck, Wannick: Wave Measuring Buoy 

forsch! – Studentisches Online-Journal der Universität Oldenburg 1/2017 

delay between two remaining upward zero crossings, as figure 5 suggests. Since the ap-
pearance of the waves varied so strongly from case to case and that in most cases after the 
first step an insufficient amount of data persisted, this method lead to no trustworthy 
results. 

Fig.5: Only considering the wave heights above the significant wave height and measuring the distances between two upward 
zero crossings. One example wave period is marked. 

As an alternative, a second approach was via Fourier frequency analysis. The results were 
more reliable and due to built-in Matlab functions the calculation was less complex. This 
was then the method of choice. 

Wave length 

As the buoy is dealt with as one single point in the model used for the calculations, the 
wavelength λ cannot be measured directly. 

It can be calculated, though, when the wave period T is known.22 

𝜆𝜆 =  𝑔𝑔T2

2𝜋𝜋
     (13) 

 
Where g is the acceleration due to earth gravity. 

This makes it easy to implement the calculation, but it means also that the quality of the 
result depends on the accuracy of the wave period. Furthermore, it has to be considered 
that the previously calculated wave period is not an absolute one, but based on the high-
est third of the waves. One could also speak of a significant wavelength, although this is 
no technical term. 

From these three parameters, as necessary, further wave characteristics like wave speed or 
average energy content can be calculated. 
                                                           
 
 
22 Wright et al., 1999, p.11. 
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4.8 Field Measurement 
From May 30, 2016, 9:16am to June, 1, 2016, 8:50am the wave measuring buoy was installed 
in the research area of the Lysekil Wave Power Project from Uppsala, at the west coast of 
Sweden, close to Lysekil.23 This took place during the “Third workshop for marine energy 
at Sven Lovén Centre”.24  

The buoy measured data during the whole time period. A calibration measurement was 
done on May 29. In the research area a Datawell Waverider wave-measuring buoy was 
installed since 2004.25 The data of the two buoys were compared (fig. 6). In the final chap-
ter we focus on the comparison of May 31, as data was measured the whole day.  

4.9 Comparison – field test and reference data 
One can see that the significant wave heights measured and processed by us is lower than 
the data from the Datawell Waverider (fig.6). Still the relative trend of the curves is iden-
tical. Between 0:00 and 5:00 the wave height fluctuates at about 0.15 m. Then the curve 
rises until a peak at 9:00/9:30. A low point of 0.1m can be seen in both curves at 10:30, 
followed by a fluctuation around 0.2m from 11:00 to 18:00. Still our calculated wave height 
stays 0.05 m to 0.1 m lower than the reference data. From 19:30 to 23:30 both graphs show 
a wave height of around 0.1 m. 

                                                           
 
 
23 Leijon et al., 2008, p.221. 

24 Bochert and Remouit (ed.), 2016, p.5. 

25 Leijon et al., 2008, p.225. 
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Fig.6: Comparison of the data measured by our wave-measuring buoy (left) and the Datawell Waverider wave-measuring buoy 
(right) installed at the Lysekil research area. Date: 31st May. X-axis: Time, Y-axis: significant wave height. 

5 Possible sources of error 
Although the field test turned out to be successful, several sources of error could be de-
tected that affect the accuracy of the results or that could have been optimized or handled 
differently during the development process. 
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5.1 Development process of the program 
As previously mentioned, the final program was developed based on simulated data be-
fore the actual field test. This means that inaccuracies and errors in the simulation could 
have led to further errors. 

Moreover, the entire methodology of the calculation is based on numerical methods. 

According to the sampling theorem by Shannon and Kotelnikov, the sampling frequency 
has to be higher than twice the highest frequency of the signal26: 

𝑓𝑓𝑎𝑎 > 2𝑓𝑓ℎ    (14) 
 

The sampling frequency in the measurement is 10 Hz, which is far higher than the highest 
expected frequency. This frequency is, referring to W. H. Munk, 1 Hz.27 Therefore, the 
error of using numerical functions can almost be neglected. 

5.2 Calculation of significant wave height 
There is no standardized definition of the significant wave height. The above formula 
depicts the result that comparable observations and estimations would have led to.28 This 
means that the significant wave height is no absolutely accurate value, but rather stands 
for a possible wave height interval. 

When any other parameter, for example the average energy content of a wave, is calculat-
ed with help of H1/3, this has to be kept in mind. 

5.3 General errors with buoy measurements 
The above-mentioned aspects explain how the measurement of the buoy could have been 
influenced. So far, it has been completely neglected that the constitution of a buoy cannot 
completely represent the real wave climate. As the buoy is not simply a point, but has a 
volume and a mass, small waves tend to be neglected. Additionally, the measured data 
compared with the actual wave tend to look more symmetrical, crests are sharper and 
troughs flatter in reality.29 If they are known, for example because of reference measure-
ments by other instruments, these errors could be eliminated. Since the only reference in 
the field test was another buoy, this was not possible. 

 

 

                                                           
 
 
26 Hoffmann (ed.), 2011, p.129. 

27 Munk, 1950, p.1. 

28 Malcherek, 2010, p. 191. 

29 Holthuijsen, 2007, S.13. 
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5.4 Accuracy of the sensor 
According to the data sheet the acceleration measurement has a sensitivity of 0.061 
mg/LSB and the magnetic measurement one of 0.080 mgauss/LSB.30 

Thus, these values lose their significance during the processing. After the filtering and the 
polynomial fit it cannot be generally retraced with which factor these accuracies influence 
the resulting distances. 

6 Conclusion and Outlook 
The wave-measuring buoy and our processing program work very well, but are not as ac-
curate as professional wave measuring buoys. Also, with 0.1m to 0.4m, only a small range 
of significant wave heights was measured, leading to a lack of comparability. 

In spite, comparing the methods and the financial aspects, especially for the sensor, com-
pared with relatively expensive commercial buoys, an effective alternative was found. 

The project can be improved by further field tests in different wave climates and adapta-
tions of filter coefficients. The magnetometer, which delivers further information and 
could be included to improve the performance, is also not included. Changing the But-
terworth to a Kalman filter or doing automatic calibrations during the measurement 
could include it.  
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